

2-Methyladenosine-Substituted 2',5'-Oligoadenylates: Conformations, 2-5A Binding and Catalytic Activities with Human Ribonuclease L

Yukio Kitade, ^{a,*} Masaharu Wakana, ^a Takayuki Tsuboi, ^a Chizuko Yatome, ^a Suzanne F. Bayly, ^b Mark R. Player ^b and Paul F. Torrence ^c

^aLaboratory of Molecular Biochemistry, Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan

^bSection on Biomedical Chemistry, Laboratory of Medicinal Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0805, USA ^cDepartment of Chemistry, Northern Arizona University, Box 5698, Flagstaff, AZ 86011-5698, USA

Received 1 November 1999; accepted 9 December 1999

Abstract—2-Methyladenosine-substituted analogues of 2-5A, p5'A2'p5'A2'p5'(me²A), p5'(me²A)2'p5'A2'p5'A, and p5'(me²A)2'p5'(me²A), were prepared via a modification of a lead ion-catalyzed ligation reaction. These 5'-monophosphates were subsequently converted into the corresponding 5'-triphosphates. Both binding and activation of human recombinant RNase L by various 2-methyladenosine-substituted 2-5A analogues were examined. Among the 2-5A analogues, p5'A2'p5'A2'p5'(me²A) showed the strongest binding affinity and was as effective as 2-5A itself as an activator of RNase L. The CD spectra of both p5'(me²A)2'p5'A2'p5'A and p5'A2'p5'A2'p5'(me²A) were superimposable on that of p5'A2'p5'A2'p5'A, indicative of an *anti* orientation about the base-glycoside bonds as in naturally occurring 2-5A. © 2000 Elsevier Science Ltd. All rights reserved.

The unique 2',5'-oligoadenylate (2-5A) acts as a potent inhibitor of translation in vertebrate cells through the activation of a constituent latent 2-5A-dependent endoribonuclease (RNase L). This 2-5A system plays a major role in the interferon natural defense mechanism against viral infection.1 The nucleotide bases of 2-5A are recognized by RNase L. Dramatic variation in RNase L binding and activating abilities of 2',5'-oligoadenylates can be achieved by replacement of the adenine 8-hydrogen. For instance, complete substitution of 8-bromoadenosine (br⁸A) for all three A's in p5'A2'p5'A2'p5'A gave a large reduction in activity; however, replacement by br⁸A at the third adenosine of pp5'A2'p5'A2'p5'A to give pp5'A2'p5'A2'p5'(br⁸A) provided a significant increase in RNase L activation.^{2,3} When 8-methyladenosine (me⁸A) replaced adenosine in the 2'-terminal position of the nucleotide, the resultant oligonucleotide, ppp5'A2'p5'A2'p5'(me⁸A), was somewhat more active than parent 2-5A trimer.⁴ Conformational studies of

In contrast, 2-bromoadenosine (br²A) introduction to the 2'-terminal position of the 2-5A molecule was of interest since it could force the nucleoside to adopt an *anti* orientation about the base-glycoside bond.⁶ The analogue with br²A residing in the 2'-terminal position, p5'A2'p5'A2'p5'(br²A), showed the strongest binding affinity and was as effective as 2-5A itself as an activator of human recombinant RNase L.⁷⁻⁹ The CD spectrum of p5'A2'p5'A2'p5'(br²A) was superimposable on that of p5'A2'p5'A2'p5'A, indicative of an *anti* orientation about the base-glycoside bonds as in naturally occurring 2-5A.⁹

In this paper, we describe the syntheses of 2-methyladenosine-substituted 2-5A derivatives and their interaction with recombinant human RNase L.⁷⁻⁹ This me²A modification, with the same nucleotide anti-orientation as

such 8-substituted 2',5'-oligoadenylates thus have led to the hypothesis that a *syn* base-sugar orientation about the glycosidic bond of the 2'-terminal adenosine nucleotide positively influenced activating activities for RNase L.⁵

^{*}Corresponding author. Tel.: +81-58-293-2640; fax: +81-58-293-2640; e-mail: kitade@apchem.gifu-u.ac.jp

Scheme 1.

naturally occurring 2-5A, further reveals the importance of base-sugar conformation in binding to and activation of RNase L.

Using the previously published procedure, ^{4,8,10} three 2′,5′-linked oligoadenylates possessing 2-methyladenosine (me²A)¹¹¹ could be generated; namely p5′A2′p5′A2′p5′A2′p5′(me²A) (1), p5′(me²A)2′p5′A2′p5′A (2), and p5′ (me²A)2′p5′(me²A)2′p5′(me²A) (3). These structures were confirmed on the basis of NMR spectroscopy (see Table 1) and degradation methods (data not shown). Three 5′-monophosphates (1, 2 and 3) were subsequently converted into the corresponding 5′-triphosphates (4, 5 and 6) using methods described earlier. ^{2–4,9}

Earlier studies^{2-4,9} have provided much evidence that effective binding to and activation of RNase L are favored by an anti conformation of the 5'-terminal nucleotide of 2-5A. According to the CD results (Fig. 1), $p5'(me^2A)2'p5'(me^2A)2'p5'(me^2A)$ (3) does not possess a conformation remarkably different from parent p5'A2'p5'A2'p5'A. However, insofar as a decrease in RNase L binding and activation ability of p5'(me²A) 2'p5'(me²A)2'p5'(me²A) (3) was observed. It is possible that steric or electronic properties associated with 2methyl substitution may play a role in these diminished parameters. On the other hand, the CD spectra of both $p5'A2'p5'A2'p5'(me^2A)$ (1) and $p5'(me^2A)2'p5'A2'p5'A$ (2) were superimposable on that of p5'A2'p5'A2'p5'A, indicative of an anti orientation about the base-glycoside bonds as in naturally occurring 2-5A and p5'A2'p5' $A2'p5'(br^2A).^9$

Introduction of a 2-methyl substituent to the adenine ring of the 5'-terminal adenosine of 2-5A trimer, p5'(me²A)2'p5'A2'p5'A (2), caused an 8-fold decrease in binding affinity to RNase L as determined by ability to compete with radiolabeled p5'A2'(p5'A2')₂ p5'A3'[³²P] pCp in a modified assay of Knight et al. 12,13 This moderate diminution in binding also was true for the 5'-triphosphate analogue, $ppp5'(me^2A)2'p5'A2'p5'A$ (5). When evaluated for their abilities to activate the RNase L, as judged by ability to stimulate the degradation of labeled poly(U) or labeled pC₁₁U₂C₇ by RNase L,¹⁴ both the monophosphate (2) and the triphosphate (5) showed an approximate 5-fold decrease in activation ability (Table 2). Thus, the loss of binding ability was directly related to the loss of RNase L activation capacity.

The 2'-terminally-modified analogues, (pp)p5'A2'p5'A2'p5'(me²A) (1 and 4), bound to the RNase L with at least a 2-fold increase in affinity compared with parent 2-5A (Table 2). RNase L activation by the 5'-monophosphate congener (1) was just as effective as by the 2-5A trimer, p5'A2'p5'A2'p5'A; however, the corresponding 5'-triphosphate (4) was slightly less active than 2-5A. The human RNase L has been shown to require only a 5'-monophosphate-terminated 2',5'-oligoadenylate trimer for full activation. Complete substitution of 2-5A trimer mono- (3) or triphosphates (6) with 2-methyladenines brought about one- or two-log decrease in binding affinity to the human RNase L (Table 2) and, concomitantly, a similar drop in ability to activate the nuclease L.

Table 1. Characteristic proton NMR signals of 2',5'-oligoadenylates (500 MHz, in D₂O)

Oligomer pApApA	H-2 and H-8 (ppm)		H-1' (ppm)	CH ₃ (ppm)	
	7.997 7.932 7.814	7.770 7.752 7.716	5.892 (<i>d</i> , <i>J</i> = 3.00 Hz) 5.759 (<i>d</i> , <i>J</i> = 3.50 Hz) 5.643 (<i>d</i> , <i>J</i> = 4.50 Hz)		
pApAp(me ² A) (1)	7.956 7.826 7.773	7.746 7.742	5.906 (<i>d</i> , <i>J</i> = 3.50 Hz) 5.769 (<i>d</i> , <i>J</i> = 3.50 Hz) 5.636 (<i>d</i> , <i>J</i> = 4.00 Hz)	2.345	
p(me ² A)pApA (2)	8.030 7.972 7.877	7.803 7.794	5.943 (<i>d</i> , <i>J</i> = 3.20 Hz) 5.838 (<i>d</i> , <i>J</i> = 4.00 Hz) 5.697 (<i>d</i> , <i>J</i> = 4.00 Hz)	2.225	
$p(me^2A)p(me^2A)p(me^2A)$ (3)	7.905 7.743 7.648		5.829 (<i>d</i> , <i>J</i> = 2.50 Hz) 5.781 (<i>d</i> , <i>J</i> = 3.50 Hz) 5.595 (<i>d</i> , <i>J</i> = 4.00 Hz)	2.290 2.195 2.097	

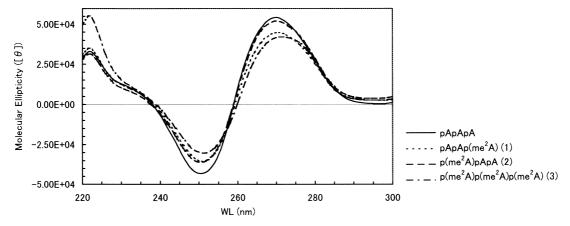


Figure 1. CD spectra of 2',5'-oligoadenylates.

Table 2. Biological activities of the purified human-recombinant RNase L by 2',5'-oligoadenylates

Oligomer	Binding ^a (IC ₅₀ nM)	$C_{ m rel}{}^{ m c}$	Activation ^b (EC ₅₀ nM)	$C_{\mathrm{rel}}{}^{\mathrm{c}}$	$R_{\rm n}{}^{\rm d}$
pApApA	7.3	1	0.15 (0.2)	1 (1)	1
$pApAp(me^2A)$ (1)	2.6	0.4	0.13 (0.2)	0.9 (1)	0.4
$p(me^2A)pApA$ (2)	57	8	0.84 (0.7)	6 (2.7)	1.4
$p(me^2A)p(me^2A)p(me^2A)$ (3)	1060	146	16 (30)	107 (120)	1.4
pppApAp(me ² A) (4)	0.72	0.1	0.24(0.3)	2 (1.5)	0.06
ppp(me ² A)pApA (5)	24	3	0.68 (0.8)	5 (4)	0.7
$ppp(me^2A)p(me^2A)p(me^2A)$ (6)	105	15	4.6 (4)	31 (20)	0.5

^aBinding ability of 2',5'-oligoadenylates to recombinant human RNase L as measured by displacement of the probe $p(A2'p)_3A3'[^{32}P]p5'Cp$. ^bActivation of purified recombinant human RNase L as measured by the degradation of poly (U) $3'[^{32}P]p5'C3'p$ and by degradation of $[^{32}P]pC_{11}U_2C_7$ (in parentheses).

 ${}^{\alpha}R_{n}$ was calculated from the quotient (binding IC₅₀)/(activation EC₅₀ for the poly(U) assay). The quotient for pApApA was then set equal to 1, and all other quotients were normalized to that value.

These results show that substitution of 2-methyladenosine for adenosine in the 2'-terminal nucleotide position of 5'-monophosphorylated 2-5A trimer supported nuclease activation to the same extent as parent 2-5A. This finding suggests that the RNase L enzyme may be able to adapt to either *syn* or *anti* conformation of the 2'-terminal nucleotide, perhaps through modulation of the nucleotide conformation itself.

Acknowledgements

This investigation was supported in part by a grant (to Y.K.) awarded by Kowa Life Science Foundation in Japan and a grant (to Y.K.) from the Gifu Life Science Research Promotion Council, which are gratefully acknowledged. The excellent technical assistance of Meredith Korneffel and Lynn Fan is gratefully acknowledged.

References

1. Kerr, I. M.; Brown, R. E. Proc. Natl Acad. Sci. USA 1978, 75, 256.

- 2. Lesiak, K.; Torrence, P. F. J. Med. Chem. 1986, 29, 1015.
- 3. Lesiak, K.; Torrence, P. F. J. Biol. Chem. 1987, 262, 1961.
- 4. Kitade, Y.; Nakata, Y.; Hirota, K.; Maki, Y.; Pabuccuoglu, A.; Torrence, P. F. *Nucleic Acids Res.* **1991**, *19*, 4103.
- 5. Van den Hoogen, Y. T.; Hilgersom, C. M.; Brozda, D.; Lesiak, K.; Torrence, P. F.; Altona, C. Eur. J. Biochem. 1989, 182, 629.
- Huang, M. C.; Avery, T. L.; Blakley, R. L.; Secrist, III, J. A.; Montgomery, J. A. J. Med. Chem. 1984, 27, 800.
- 7. Zhou, A.; Hassel, B. A.; Silverman, R. H. Cell 1993, 72, 753.
- 8. Dong, B.; Xu, L.; Zhou, A.; Hassel, B. A.; Lee, X.; Torrence, P. F.; Silverman, R. H. *J. Biol. Chem.* **1994**, *269*, 14153. 9. Kitade, Y.; Wakana, M.; Terai, S.; Tsuboi, T.; Nakanishi, M.; Yatome, C.; Dong, B.; Silverman, R. H.; Torrence, P. F. *Nucleosides Nucleotides* **1998**, *17*, 2323.
- 10. Kitade, Y.; Alster, D. K.; Pabuccuoglu, A.; Torrence, P. F. *Bioorg. Chem.* **1991**, *19*, 283.
- 11. Hirota, K.; Kitade, Y.; Kanbe, Y.; Maki, Y. J. Org. Chem. **1992**, *57*, 5268.
- 12. Knight, M.; Wreschner, D. H.; Silverman, R. H.; Kerr, I. M. Methods in Enzymol. 1981, 79, 216.
- 13. Silverman, R. H.; Krause, D. In *Lymphokines and Interferons*; Clemens, M. J.; Morris, A. G.; Gearing, A. J. H., Eds.; IRL Press, Oxford, 1987; pp 149–193.
- 14. Player, M. R.; Bayly, S.; Wondrak, F.; Torrence, P. T. *Methods* **1998**, *15*, 243.

 $[^]cC_{rel}$ was defined as the relative concentration of analogue required to displace 50% of the probe or to cause 50% degradation of substance. dR_n was calculated from the quotient (binding IC_{50})/(activation EC_{50} for the poly(U) assay). The quotient for pApApA was then set equal to 1, and